International Journal of Scope of Computer Research
Vol. 5, No. 4, pp. 034-037, April 2016

http://www.wrpjournals.com/IJSCR

Research Article

A Survey on XSS - The Top Web Application Security Vulnerability

Shivangi Sharma and *Dr. Sheetal Kalra

Department of Computer Science, Guru Nanak Dev University, Regional Campus, Jalandhar Regional

Campus, Jalandhar, India

Received Article 26t March, 2016; Published Article 27t April 2016

Web application dependence is increasing very rapidly day by day for social communications, financial transaction and various other purposes.
Unfortunately, security risks present due to weaknesses present in source code in web applications allows malicious user's to exploit various
security vulnerabilities and become the reason of their failure. Due to vulnerabilities present in web applications, they can be continuously
targeted by malicious user and thus performing attacks. Among these attacks, Cross-Site Scripting (CSS or XSS) attack is a common type of
attacks. This study has identified Cross Site Scripting as the top web application security vulnerability. This paper surveys the previous work on
Cross Site Scripting detection and prevention using Dynamic Cookies Rewriting and the technique for PHP using ARDILLA tool.

Key words: Cross site scripting, Web applications, Web proxy, Cookie.

*Corresponding author: Shivangi Sharma

Department of Computer Science, Guru Nanak Dev University, Regional Campus, Jalandhar Regional Campus, Jalandhar, India.

INTRODUCTION

XSS has become the most common threat in web applications.
Web applications are the software applications that can be run
and accessed on network with the use of web browsers. They
can be categorized as static web application and dynamic web
application. Static web applications are those that display the
information to the user and dynamic web applications accepts
input from the user and does actions based on the input (Dr.
Jayamsakthi Shanmugam and Dr. Ponnavaikko, 2008). A
significant amount of web applications are vulnerable. The
reason behind vulnerabilities is the weaknesses present in
source codes and improper input handling. The weaknesses
present in source code include programming language
weakness, improper input validations or ignorance of security
guidelines by developers who repeat the same type of
programming mistakes in their code (Mukesh Kumar Gupta et
al., 2014). XSS wvulnerability is the result of lack of web
application in sanitizing/validating user inputs. Using these
un-sanitized inputs, malicious users inject malicious scripts in
web pages of web applications. XSS attacks possess various
severe security risks which includes identity theft, access to
restricted or confidential information, altering the functionality
of browser, redirecting user to another websites etc. XSS
provides platform for other type of attacks like Cross Site
Request Forgery, Session Hijacking etc. (Vikas et al., 2013).
XSS attack includes the insertion of a piece of script on the
client side. The code can be written in any language among
which JavaScript is mostly used. Generally, personal firewall
and antivirus software on the client are invalid to XSS attacks.
XSS attackers may use encoding, encryption and other
technologies to escape or avoid the server-side filtering (Ding
Lan et al., 2013). Web proxy can effectively reduce the

traditional XSS attacks that aim to steal user’s information.
XSS flaw occurs when an application takes untrusted data and
sends it to a web browser without proper validation or
escaping. It allows attackers to execute scripts in victim’s
browser thus allowing attackers to hijack user sessions or
redirect user to malicious sites. XSS is one of the most
common application layer attack technique used by attacker.

BACKGROUND
A. XSS Attack Types

There is no standardized classification of the XSS attacks. The
two well-known types of XSS attacks: Non-persistent and
Persistent.

i) Non-persistent (or reflected) XSS

Also known as first-order XSS or Type 1 XSS vulnerabilities
occur when a user is directed to a web application that has
XSS vulnerability, by the malicious user. Once the user gets to
the website or application the malicious user’s attack is
executed. In reflected XSS attacks, the injected code doesn’t
reside on the web server (Vikas et al., 2013). The attack is
crafted by a series of URL parameters that are sent via a URL.
The malicious links are sent to victims using email, instant
messages, blogs or forums or any other possible methods.
When user clicks on this link, the injected code goes to the
web server of attacker, which sends the attack back to the
victim’s browser. Browser will execute this code as it comes
from a trusted server thus performing malicious work like
stealing the confidential information of victims, hijack user’s
account via cookie etc.

International Journal of Scope of Computer Research

ii) Persistent (or stored) XSS

They are also known as second-order XSS or Type 2 XSS. In
stored or persistent XSS attacks the injected code is
permanently stored on the target servers. The storage of
method can involve a database, or a wiki, or blog. Stored XSS
attacks are generally performed on web applications that take
input from user in the form of text and store in the database of
web applications (Vikas et al., 2013). Examples of such
applications are blogs, forums etc. These attacks are more
dangerous than reflected as reflected attacks are dynamic in
nature whereas stored attack can just be set once.

B. Cookies

A cookie (also called Internet cookie, HTTP cookie, Browser
cookie, web cookie) is a small piece of data which is sent from
a website that user is browsing and is stored in user’s browser.
Whenever user loads the website next time, the browser sends
the cookie back to the server to notify the website about the
user's previous activity. They provide stateful communications
over the HTTP. Cookies are given ID tags. These are broadly
used to store the session IDs or personal sensitive information.
In general, cookies can be categorized into two types:

e Session cookies: They are also known as an in-memory
cookie or transient cookie. They are used temporarily
while user navigates the websites; are discarded when the
user closes the browser; do not have an expiration date
assigned to them.

o Persistent cookies: They expire at a specific date or after a
specific length of time; are stored on the disk.

e Security vulnerabilities may allow a cookie's data to be
read by a hacker, used to gain access to user data, or used
to gain access (with the user's credentials) to the website to
which the cookie belongs. There are two different versions
of cookie specifications in use (Rattipong Putthacharoen
and Pratheep Bunyatnoparat, 2011):

e Version 0 cookie (Net Scape cookie): It is the most
widely used version. The cookies are identified by the
combination of the following attributes: name, domain,
and path. An arbitrary string can be used by the web server
as the value of the name attribute.

e Version 1 cookie (RFC 2965): It is an extended version of
Net Scape cookie. In addition, it adds an ability to identify
the cookie by the port attribute.

The web server must always specify the value of the name
attribute and the cookie version in the cookie, and the browser
must return the same values. Almost all modern browsers do
not support the version 1 cookie except Opera browser, so the
version 1 cookie is not widely used by web developers.

C. Web Proxy

The web proxy is an intermediate that fulfills transactions on
behalf of clients. Many organizations allow the users only to
access the internet via the web proxy. The web proxy can be a
separate device or a part of a firewall. It must sit between the
clients and the web servers, and acts as both the client to the
web server and the web server to the client, as shown in
Figurel. All web connections from the clients are intercepted
at the web proxy, and then the web proxy will initiate new

035

web connections to the web servers on behalf of the clients.
Proxy servers also help improve security by filtering out some
web content and malicious software. It helps improve web
performance by storing a copy of frequently used web pages.

.| WEB
SERVER

A
.

¢ » WEB
PROXY

Figure 1. Web proxy

1: Connection 1: Client opens connection; Proxy intercepts it
and impersonates Server.

2: Connection 2: Proxy opens connection to Server; forward
server’s responses back to client through connectionl

CROSS SITE SCRIPTING (XSS) DETECTION AND
PREVENTION

1. “Protecting Cookies from Cross Site Script Attacks Using
Dynamic Cookies Rewriting Technique”.(Rattipong
Putthacharoen, Pratheep Bunyatnoparat) (2011)

(Rattipong Putthacharoen and Pratheep Bunyatnoparat, 2011)
This approach present how the cookies can be significantly
protected from the XSS attacks. The approach is implemented
in the web proxy without requiring any change on both web
browser and web server. This technique is called “Dynamic
Cookie Rewriting”. With this technique, web proxy will
automatically rewrite the value of the name attribute in the
cookie with the randomized value before it sends cookie to
browser. Browser will keep the randomized value in its
database instead of original value. At web server end, the
return cookie from browser will be rewritten again to its
original form at the web proxy before being forwarded to the
web browser. Now, the browser’s database does not store
original values of cookies so when there is a XSS attack, the
cookies that are stolen from browser’s database cannot be used
later to impersonate the users. To implement this approach in
the web proxy and take it into the action in the live
environment, at least following three challenges have to be
considered:

e Compatibility — This approach changes the values of the
cookies in HTTP header, so it have to be made sure that
this will not break the HTTP and be able to work well and
transparently with all websites on the internet. Although
almost all websites on the internet use only the version 0
cookies but this approach follows both version 0 and
version 1 cookie specifications in order to be sure that it is
able to manage properly all cookies sent by all websites.

e Performance —Taking the web proxy into the action onto a
network definitely adds more latency and increases the
response time. So with the web proxy in place, instead of
degrading the system performance, it helps to multiply
overall performance, improve user experience and also
reduce internet bandwidth usage.

International Journal of Scope of Computer Research

e Single point of failure - Web proxy rewrites the cookies,
and keeps the original values of the cookies in its database.
So when it fails, those original values will be gone.
Fortunately, there are several technologies in place which
are able to detect and bypass the web proxy once it fails
such as PAC file, WCCP Protocol, Policy Based Routing
(PBR) and so on. With one of those technologies, even the
web proxy fails, the clients are still able to reach the web
servers.

2. "Automatic Creation of SQL Injection and Cross-site
Scripting (XSS) Attacks (Ardilla)” (Adam Kiezun, Philip J.
Guo, Karthick Jayaraman, Michael D. Ernst)(2009)

(Adam Kiezun et al., 2009) This approach presents a
technique and an automated tool for finding security
vulnerabilities in web applications. The technique works on
unmodified existing code, creates concrete inputs that expose
vulnerabilities, operates before software is brought into action,
has no overhead for the released software, and analyzes
application internals to discover vulnerable code. As an
implementation of this technique, an automated tool Ardilla is
created for creating SQLI and XSS attacks in PHP/MySQL
applications. Ardilla is a white-box testing tool, i.e., it requires
the source code of the application. It is designed for testing
PHP applications. Security vulnerabilities that Ardilla
identifies can be fixed before the software reaches the users
because Ardilla creates concrete attacks that exploit the
vulnerability. It is based on input generation, taint
propagation, and input mutation to find variants of an
execution that exploit vulnerability. The user of Ardilla needs
to specify the type of attack (SQLI, first-order XSS, or
second-order XSS), the PHP program to analyze, and the
initial database state. The outputs of Ardillaare attack vectors.

Ardilla
=
Database
state
A ?
h J
Input Concrete+Symbolic
Generator Database
A
Executor/Taint
PHP Propagator
Program
H‘H“"“m taint sets
Attack o AttaF:k
WVectors - | Generator/Checker
ARDILLA

Figure 2. The architecture of ARDILLA.
Limitations that exist with this approach:

e Developer availability and learning is required.
e Source code adjustment is needed.

036

o If the original developer left the project it is very difficult
to patch the vulnerabilities.
e [tis tested on PHP based applications.

3. “Static Analysis Approaches to Detect SQL Injection and
Cross Site Scripting Vulnerabilities in Web Applications: A
Survey ”(Mukesh Kumar Gupta, Department of Computer
Engineering, Malviya National Institute of Technology,
Jaipur, India) (2014)

(Mukesh Kumar Gupta and Govil, Girdhari Sing, 2014) This
paper proposes a classification of software security approaches
used to develop secure software in various phase of software
development life cycle. It also presents a survey of static
analysis based approaches to detect SQL Injection and cross-
site scripting vulnerabilities in source code of web
applications. The aim of these approaches is to identify the
weaknesses in source code before their exploitation in actual
environment. The wvulnerability detection approach is
classified into static analysis, dynamic analysis and hybrid
analysis. In static analysis approach, it analyzes the source
code without running the application. Various static analysis
techniques include lexical analysis, type inference, dataflow
analysis, constraint analysis, symbolic execution etc. Dynamic
analysis approach requires executable code to detect the
vulnerabilities. It includes fault injection testing technique
(introduces faults to test behavior of system) and dynamic
taint based approach (tainted data is inspected to check
validity of input before their use). Limitation of this approach
is only vulnerabilities present in the execution paths are
detected, unable to detect vulnerabilities in parts of code that
were not executed, results produced are not generalized for
future executions. These two approaches are applied in coding
or testing phase of SDLC. Hybrid analysis approach combines
static and dynamic analysis. This paper would help researchers
to note down future direction for securing legacy web
applications in early phases of software development life
cycle.

Conclusion

It is found that Cross-Site Scripting (XSS) attacks are most
powerful and easiest attack methods on the Web Applications.
This paper presents a survey of techniques for defending
against XSS exploits. The promising strategies such as
Dynamic Cookies Rewriting, ARDILLA have developed
which are rising. Dynamic Cookie Rewriting aims to disarm
the attackers from impersonating the users. ARDILLA is an
automated tool that can effectively and accurately find the
most damaging type of input-based Web application attack:
stored (second-order) XSS for PHP based web applications.
This study shows the strengths and weaknesses of current
approaches against cross site scripting. The main motivation
of this work is to summarize the recent approaches in this field
of research, identify major issues and challenges and to
encourage further research in this field.

REFERENCES

Adam Kiezun, Philip J. Guo, Karthick Jayaraman, Michael, D.
2009. Ernst, "Automatic Creation of SQL Injection and
Cross-site Scripting (XSS) Attacks (Ardilla)" [EEE .

International Journal of Scope of Computer Research 037

Ding Lan and Wu Shu Ting, Ye Xing and Zhang Wei, 2013. Rattipong Putthacharoen and Pratheep Bunyatnoparat, 2011.

“Analysis and Prevention for Cross-site Scripting Attack “Protecting Cookies from Cross Site Script Attacks Using

Based on Encoding” /EEE. Dynamic Cookies Rewriting Technique”Feb. 13~16,
Dr. Jayamsakthi Shanmugam and Dr. M. Ponnavaikko, 2008. ICACT2011. Method for Detecting Cross-Site Scripting

“Cross Site Scripting-Latest developments and solutions: Attacks.

A survey” Int. J. Open Problems Compt. Math., Vol. 1, Vikas K. Malviya, Saket Saurav and Atul Gupta, 2013. “On

No. 2, September 2008. Security Issues in Web Applications through Cross Site
Mukesh Kumar Gupta, M.C. and Govil, Girdhari Singh, 2014. Scripting (XSS)” 20th Asia-Pacific Software Engineering

“Static Analysis Approaches to Detect SQL Injection and Conference.

Cross Site Scripting Vulnerabilities in Web Applications:
A Survey” IEEE International Conference on Recent
Advances and Innovations in Engineering, (ICRAIE-
2014), May 09-11, Jaipur, India.

skosk skok skokosk

